INFO/CS 4302
Web Information Systems

FT 2012
Week 7: RESTful API Design

- Bernhard Haslhofer -

Plan for today...

RESTful APls — Architectural principles contd.
REST API Design

Real-world REST APIs (Groupwork)

Questions, Housekeeping, ...

RESTFUL APIS — ARCHITECTURAL
PRINCIPLES CONTD.

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

Uniform Interface

 With HTTP we have all methods we need to
manipulate Web resources (CRUD interface)

— Create = POST (or PUT)
— Read = GET

— Update = PUT

— Delete = DELETE

Traditional CRUD

REST CRUD

Uniform Interface

e CREATE a new resource with HTTP POST

Client Server

-~ POST /movies HTTP/1.1
4 ———1 Host: example.com
<movie ... />

201 Created
Location: http://example.com/movies/1234

\

-«

l

l4——1 400 Bad Request

\

g——1 500 Internal Server Error

\

Uniform Interface

* READ an existing resource with HTTP GET

Client Server
/ GET /movies/1234 HTTP/1.1
Host: example.com >
| 200 OK
<movie ... />

lg———1 404 Not Found

\

g—— 500 Internal Server Error

\

Uniform Interface

 UPDATE an existing resource with HTTP PUT

Client Server

/ | PUT /movies/1234 HTTP/1.1
y —— Host: example.com
<movie ... />

200 OK

\

-

l

<@—— 404 Not Found

\

q—— 409 Conflict

\

¢—— 500 Internal Server Error

\

Uniform Interface

* DELETE an existing resource with HTTP DELETE

Client Server
DELETE /movies/1234 HTTP/1.1 — g
Host: example.com -
¢ 200 OK

l

l@——1 404 Not Found

\

l@——1 405 Method Not Allowed

\

<¢—— 500 Internal Server Error

\

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

10

Connectedness

* |n RESTful services, resource representations are
hypermedia

* Served documents contain not just data, but also links
to other resources

HTTP/1.1 200 OK
Date: ...
Content-Type: application/xml

<?xml...>

<movie>
<title>The Godfather</title>
<synopsis>...</synopsis>
<actor>http://example.com/actors/567</actor>

</movie>

The Resource-Oriented Architecture

* A set of design principles for building RESTful

Web Services

— Addressability

— Uniform interface
— Connectedness

— Statelessness

- RESTful

Web Services

O'REILLY*

12

Statelessness

e Statelessness = every HTTP request executes
in complete isolation

* The request contains all the information
necessary for the server to fulfill that request

e The server never relies on information from a
previous request

— if information is important (e.g., user-
authentication), the client must send it again

13

Statelessness

This constraint does not say “stateless applications”!
— for many RESTful applications, state is essential

— e.g., shopping carts

It means to move state to clients or resources

State in resources

— the same for every client working with the service

— when a client changes resource state other clients see this
change as well

State in clients (e.g., cookies)
— specific to client and has to be maintained by each client
— makes sense for maintaining session state (login / logout)

State in the Application

Resources

Products

User Agent Application
e e e e >
"Y"AHOO.' — <
= M o
== Tins .
=€ - o 5| | Shopping
= < Carts

Session-ldentified State

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Users

User Agent
asico! —
= e
= = —) 'EE“
= - anais
—i =

Statelessness

Application

Application State (User Session)

Resources
> Products
» Users

» Shopping

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Carts

State as a Resource

Statelessness

Scenario 1 Application 1 Resources
2 . >
i [Products

Application 2 Users

> Shopping
Carts

© Erik Wilde: http://dret.net/netdret/docs/rest-icwe%QlO/

Tools and Frameworks

Ruby on Rails - a framework for building RESTful Web applications

— http://www.rubyonrails.org/
Restlet - framework for mapping REST concepts to Java classes

— http://www.restlet.org

Django - framework for building RESTful Web applications in Python

JAX-RC specification (http://jsr311.java.net/) provides a Java API for
RESTful Web Services over the HTTP protocol.

RESTEasy (http://www.jboss.org/resteasy/) - JBoss project that provides
various frameworks for building RESTful Web Services and RESTful Java

applications. Fully certified JAX-RC implementation.

RESTFUL SERVICE DESIGN - IN
BRIEF

o6
a4t dret.net/netdret/docs/rest- % | -

&« C ff ® dret.net/netdret/docs/rest-icwe2010/design.pdf DA S
o ° 0
Universita Faculty ~y
della of Informatics UQ BCI keley
Svizzera ~ . .
italiana b(’l’)()()l ()[‘ ln{()l‘mu‘tl()n

RESTful Service Design

Web API Design

Crafting Interfaces that Developers Love

Cesare Pautasso
Faculty of Informatics
University of Lugano, Switzerland

c.pautasso@ieee.org I ‘ W
http://www.pautasso.info

2010 » \lenna | .

Brian Mulloy

20

Design Methodology

* |dentify and name resources to be exposed by
the service

— actors and movies

* Model relationships between resources that
can be followed to get more details
— an actor can play in several movies
— several actors are playing in a movie

e Define “nice” URIs to address the resources

Design Methodology

Map HTTP verbs to resources
—e.g., GET movie, POST movie, etc...

Design and document resource
representations

— we want to serve JSON (and XML)
— the JSON mime-type is application/json

Implement and deploy Web Service
Test with cURL or browser developer tools

REST API Design Principles

* Who is the target audience?

* What are we trying to achive with an API?

23

REST API Design Principles

Make application developer as successful as
possible

Primary design principle: .“...maximize developer
productivity and success” (Mulloy)

Keep simple things simple

Take the developer’s point of view

24

Nouns are good; verbs are bad

e Simple and intuitive base URLs

— /actors

— /peopleplayingin80iesmovies
* 2 base URLs per resource

— /actors (collection)

— /actors/1234 (specific element in collection)
* Keep verbs out of your base URLs

— /getAllActors

25

Nouns are good; verbs are bad

e Use HTTP verbs

Resource POST GET DELETE
(create) (read) (delete)

/actors Create anew List actors Bulk update Delete all
actor actors actors
/actors/1234 Error Show actor If exists Delete actor
1234 update actor 1234
1234

Else: error

26

Plural nouns and concrete names

e Using plural nouns might be more intuitive
— /movies
— /actors
* Singular nouns are OK, but avoid mixed model
— /movie /actor
— /movies /actor
* Prefer a managable number (12-24) of concrete
entities over abstraction
— /movie /actor /producer /cinema ...
— /item

27

Simplify associations

* Relationships can be complex
— movie -> actor -> pets -> ...
— URL levels can become deep

* |[n most cases URL level shouldn‘t be deeper
than: resource/identifier/resource

— /actor/1234/movies
— /movies/1234/actors

Filtering

...sweep complexity behind the ?

/actors?gender=male&age=50

29

Handling Errors

e Use HTTP status codes

— over 70 are defined; most APIs use only subset of 8-10

e Start by using
— 200 OK (...everything worked)
— 400 Bad Request (..the application did sth. wrong)
— 500 Internal Server Error (...the APl did sth. wrong)

* |f you need more, add them

— 201 Created, 304 Not Modified, 401 Unauthorized,
403 Forbidden, etc..

30

Handling Errors

* Make messages returned in HTTP body as
verbose as possible

{"developerMessage" : "Verbose, plain
language description of the problem for
the app developer with hints about how to

fix it.”,

"userMessage":"Pass this message on to the
app user if needed.”,

"errorCode" : 12345,

"more info": http://example.com/errors/
123457}

Bad Request

Internal Server Error

http://httpcats.herokuapp.com/

Versioning

e Never release an APl without a version

e Suggested syntax
— put version number in first path element
— Vv’ prefix
— simple ordinal number
— /v1/actors

* Maintain at least one version back

Partial responses

 Sometimes you don‘t need the entire
representation

 Save bandwith

* Add optional fields in a comma-delimited list

— /movies?fields=title

Pagination

* |t's almost always a bad idea to return every
available resource

* Use limit and offset to allow pagination
— /movies?limit=20&offset=0

* Include metadata about total number of
resources in representation

Actions not dealing with resources

 Certain API calls don‘t send resource
responses

— calculate
— translate
— convert

e Use verbs and make it clear in the docs
e /convert?from=EUR&to=USD&amount=100

36

Multiple Formats

Support for more than one format is recommended
— JSON default format; XML secondary
— mapping can be automated

,Pure”“ RESTful approach

— Accept: application/xml in HTTP Header
Pragmatic approach

— /actors.json, /actors.xml

— /actors/1234.json, /actors/1234.xml
Mixed approach

— /actors -> content negotiated depending on Accept header
— /actors.json -> direct format-specific access

Search

* Global search (across resources)
— /search?q=godfather

* Scoped search
— /actors/1234/movies?q=godfather

* Formatted results
— [search.xml?qg=godfather

38

APl subdomain

* Consolidate all APl requests under one API
subdomain

— api.example.com

* Developer portal (documenation, etc...)
— developer.example.com

e Web redirects

— e.g., redirect browser requests to developer
portal

REAL-WORLD REST APIS

Instructions

Form groups of 5 and choose one Web API

Answer the following questions (15 min):

Which resources are exposed and how are they named?
Which HTTP verbs are used and for what purpose?

How is error handling implemented? Which HTTP error codes are
used?

s filtering, pagination, and search supported? If yes, how?
how RESTful is the Web API?

Create summary slides at:
http://bit.ly/info4302-existing-apis

Be prepared to talk about your findings

41

Outlook

Social Networking Sites as Walled Gardens by David Simonds

42

Outlook

@@@@
STEE SEENe
=<0 S R =50
OB N EET P =) S
, | : *\\‘)|
@’:"" -
: A g Y = =\ - T o\ W N)
“! 5 fé@\Qté"'@‘fw‘§°1a =)
B e 50 o % e gons
e, o 74

S
%

.

@@@ As of September 2011 @O @

Readings

* Tutorial Design Principles, Patterns and
Emerging Technologies for RESTful Web
Services (Cesare Pautasso and Erik Wilde):
http://dret.net/netdret/docs/rest-icwe2010/

* Web API Design — Crafting Interfaces that
Developers Love:

http://apigee.com/about/api-best-practices

44

